	Q.P. Code: 20CE0119													R20			
	Reg. No:]					
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PU															ł		
		B.Te	ch III Y	'ear l	Sem	(AU ester	TON(Real	MOU MOU	JS) xami	natio	ns Ma	arch-	2023	3			
					ST	RUC	TURA	AL DE	ESIGN	N							
	T. 21					(Civ	il Eng	ineerii	ng)								
														Max. Marks: 60			
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I																
1	a State the assumptions made in limit state of collapse in bending for the design of a reinforced concrete section.											of	CO1	L1	6M		
	b Draw the strain and stress distribution for singly reinforced beam and derive expression for depth of neutral axis, leaver arm and moment of resistance with respect to concrete and steel.													CO1	L2	6M	
2	OR Design a singly reinforced concrete beam of clear span 5m to support a design working live load of 10 kN/m. Adopt M20 grade concrete and Fe 415 grade steel.												gn	CO1	L4	12M	
3	A reinforced concrete beam of rectangular section 300 mm wide is reinforced with four bars of 25 mm diameter at an effective depth of 600 mm. The beam has to resists a factored shear force of 400 kN at support section. Assume $f_{ck}= 25 \text{ N/mm}^2$ and $f_y = 415 \text{ N/mm}^2$, design vertical stirrups for the section.											th to n ²	CO2	L4	12M		
4	Design a simply supported RCC slab for an office floor having clear dimensions of 4m x 10 m with 230 mm wall all-round. Using M20 grade concrete and Fe415 grade steel. Live load on the slab is 4 kN/m ² and weight of weathering coarse over the slab is 1.5 kN/m ² .													CO2	L4	12M	
5	Design a short axially loaded square column 500 mm x 500 mm for a service load of 2000 kN. Use M20 grade concrete and Fe 415 HYSD bars.													CO3	L4	12M	
6	Design a reinforced concrete footing of uniform thickness for a reinforced concrete column of 400 mm x 400 mm size carrying an axial load of 1200 k N Use M 20grade concrete and Fe 415 steel. The safe bearing capacity of soil is 220 kN/m ² .												ed N. 20	CO3	L3	12M	
7	 a Define welding. Explain various types of weld connections with neat sketches. b What are the advantages and disadvantages of welded connections? 													CO5 CO5	L2 L1	6M 6M	
8	Design a lap joint between the two plates each if width 120mm if the thickness of one plate is 16mm and the other is 12mm. The joint has to transfer a design load of 160kN. The plates are of Fe410 grade. Use bearing type bolts.												of of	CO5	L3	12M	
9	Determine the design axial load capacity of the column ISMB300@577 N/m, if the length of the column is 3m and its both ends pinned. OR													CO6	L3	12M	
10	Design a beam weight) the flang	4m e ges are	ffective e embe	e leng dded i	gth sul n slab	ojecte and s	d to 5 imply ** EN	0 k N suppo D ***	I/m U rted at	DL (I t both	nclud the en	ing se ids.	elf	CO6	L4	12M	